Matrix-valued Symmetric Templates for Interpolatory Surface Subdivisions, I: Regular Vertices
نویسندگان
چکیده
The objective of this paper is to introduce a general procedure for deriving interpolatory surface subdivision schemes with “symmetric subdivision templates” (SSTs) for regular vertices. While the precise definition of “symmetry” will be clarified in the paper, the property of SSTs is instrumental to facilitate application of the standard procedure for finding symmetric weights for taking weighted averages to accommodate extraordinary (or irregular) vertices in surface subdivisions, a topic to be studied in a continuation paper. By allowing the use of matrices as weights, the SSTs introduced in this paper may be constructed to overcome the size barrier limited to scalar-valued interpolatory subdivision templates, and thus avoiding the unnecessary surface oscillation artifacts. On the other hand, while the old vertices in a (scalar) interpolatory subdivision scheme do not require a subdivision template, we will see that this is not the case for the matrix-valued setting. Here, we employ the same definition of interpolation subdivisions as in the usual scalar consideration, simply by requiring the old vertices to be stationary in the definition of matrix-valued interpolatory subdivisions. Hence, there would be another complication when the templates are extended to accommodate extraordinary vertices if the template sizes are not small. In this paper, we show that even for C2 interpolatory subdivisions, only one “ring” is sufficient in general, for both old and new vertices. For example, for 1-to-4 split C2 interpolatory surface subdivisions, we obtain matrix-valued symmetric interpolatory subdivision templates (SISTs) for both triangular and quadrilateral meshes with sizes that agree with those of the Loop and Catmull-Clark schemes, respectively. Matrixvalued SISTs of similar sizes are also constructed for C2 interpolatory √ 3 and √ 2 subdivision schemes in this paper. In addition to small template sizes, an obvious feature of matrix-valued weights is the flexibility for introducing shape-control parameters. Another significance is that, in contrast to the usual scalar setting, matrix-valued SISTs can be formulated in terms of the coefficient sequence of some vector refinement equation of interpolating bivariate C2 splines with small support. For example, by modifying the spline function vectors introduced in our previous work [3, 6], C2 symmetric interpolatory subdivision schemes associated with refinement equations of C2 cubic and quartic splines on the 6-directional and 4-directional meshes, respectively, are also constructed in this paper. ∗Research supported by NSF Grant #CCR-0098331 and ARO Grant #W911MF-04-1-0298. This author is also with the Department of Statistics, Stanford University, Stanford, CA 94305. †Research partially supported by a University of Missouri–St.Louis Research Award.
منابع مشابه
From extension of Loop's approximation scheme to interpolatory subdivisions
The minimum-supported bivariate C2-cubic spline on a 6-directional mesh constructed in our previous work [2] can be used to extend Loop’s approximation subdivision scheme to introduce some parameter for controlling surface geometric shapes. This extension is achieved by considering matrix-valued subdivisions, resulting in subdivision templates of the same 1-ring template size as Loop’s scheme, ...
متن کاملInterpolatory quad/triangle subdivision schemes for surface design
Recently the study and construction of quad/triangle subdivision schemes have attracted attention. The quad/triangle subdivision starts with a control net consisting of both quads and triangles and produces finer and finer meshes with quads and triangles. The use of the quad/triangle structure for surface design is motivated by the fact that in CAD modelling, the designers often want to model c...
متن کاملMatrix-valued 4-point spline and 3-point non-spline interpolatory curve subdivision schemes
The objective of this paper is to study and construct matrix-valued templates for interpolatory curve subdivision. Since our investigation of this problem was motivated by the need of such subdivision stencils as boundary templates for interpolatory surface subdivision, we provide both spline and non-spline templates that are necessarily symmetric, due to the lack of direction-orientation in ca...
متن کاملRefinable bivariate quartic and quintic C2-splines for quadrilateral subdivisions
Refinable compactly supported bivariate C quartic and quintic spline function vectors on the four-directional mesh are introduced in this paper to generate matrix-valued templates for approximation and Hermite interpolatory surface subdivision schemes, respectively, for both the √ 2 and 1-to-4 split quadrilateral topological rules. These splines have their full local polynomial preservation ord...
متن کاملMatrix-valued subdivision schemes for generating surfaces with extraordinary vertices
Subdivision templates of numerical values are replaced by templates of matrices in this paper to allow the introduction of shape control parameters for the feasibility of achieving desirable geometric shapes at those points on the subdivision surfaces that correspond to extraordinary control vertices. Formulation of the matrix-valued subdivision surface is derived. Based on refinable bivariate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004